

EXPERIMENTAL

UV spectra were measured in MeOH and IR spectra as KBr discs. NMR spectra, unless otherwise stated, were determined for soln in deuteriochloroform. TLC was performed with Si gel G and preparative TLC with Kieselgel (PF₂₅₄).

Separation of the Fraction 4. Fraction 4 (1 g) was chromatographed on polyamide (nylon 66, 100 g) eluting with MeOH-H₂O (3:7) to give Fraction 4a (0.1 g), 4b (0.05 g) and 4c (0.25 g). Fraction 4c was then separated by preparative TLC (SiO₂) with CHCl₃-MeOH (17:3) gave Fraction 4c₁ (yellow band, R_f 0.33) and 4c₂ (yellow band, R_f 0.17). Recrystallization of each fraction (4a, 4b, 4c₁ and 4c₂) from Me₂CO-C₆H₆ yielded compounds (3) (92 mg), (4) (34 mg), (7) (57 mg) and (8) (110 mg) respectively.

Dehydrogenation of 3 nonaacetate. The nonaacetate of 3 (11 mg), NBS (2 mg), benzoylperoxide (1 mg) in CCl₄ (10 ml) were refluxed under irradiation for 2 min. The soln became brown. KOAc (20 mg) was added and the whole refluxed for 5 min, during which brown red colour faded. After removal of CCl₄ in *vacuo*, added H₂O gave a ppt. mp 154-157° (EtOH), which was identical with an authentic spicataside (7) nonaacetate (TLC, IR and mmp).

Acknowledgements—The authors wish to thank Professor H. D. Locksley, Dr. F. Scheinman and Professor K. Venkataraman for the generous gift of authentic samples; Professor Yasumasa Ikeshiro for the courtesy of comparison with an authentic sample, Professor J. C. Liao for collecting timber, Professor W. C. Lin, Professor C. H. Yang and the Faculty members for NMR, UV, IR and MS measurements and microanalysis. This work was supported by the National Science Council as the research project of Chemistry Research Centre, National Taiwan University.

REFERENCES

1. Chen, F. C., Lin, Y. M. and Hung, J. C. (1975) *Phytochemistry* to be published.
2. Konoshima, M. and Ikeshiro, Y. (1970) *Tetrahedron Letters* 1717.
3. Konoshima, M., Ikeshiro, Y., Miyahara, S. and Yen, K. Y. (1970) *Tetrahedron Letters* 4203.
4. Locksley, H. D. (1973) The chemistry of bisflavanoid compounds, in *Progress in the Chemistry of Organic Natural Products* (W. Herz, H. Grisebach and G. W. Kirby, eds.), Vol. 30, p. 283. Springer, New York.

Phytochemistry, 1975, Vol. 14, pp. 820-821. Pergamon Press. Printed in England.

PENTACYCLIC TRITERPENIC ACIDS: MICROMERIC ACID FROM *SAVIA HORMINUM*

A. ULUBELEN

Faculty of Pharmacy, University of Istanbul, Turkey

and

C. H. BRIESKORN

Institute of Pharmacy and Food Chemistry, University of Würzburg, Germany

(Received 2 July 1974)

Key word Index—*Salvia horminum*; Labiate; micromeric acid; sitosterol; four other triterpenic and steroidal alcohols.

INTRODUCTION

The presence of triterpenes in some *Salvia* species has long been known. Ursolic and oleanolic acids were isolated from *S. officinalis* [1-5], *S. triloba* [6-8] and *S. apiana* [9], other triterpenes were obtained from *S. officinalis* [10-12] and *S. apiana* [9] and a new triterpene, anagadiol, was found in *S. broussonetti* [13].

*S. horminum** which grows in Turkey, has not been investigated until now. From the upper

ground parts of the plant ursolic, oleanolic and micromeric acids were isolated. Although micromeric, ursolic and oleanolic acids have been found together in other plants of the Labiate, micromeric acid is reported for the first time in *Salvia*. The acid was first isolated from *Micromeria benthami* [14] and later, was found in the leaves of *Rosmarinus officinalis* [15].

EXPERIMENTAL

Salvia horminum was collected from the Mediterranean coast of Turkey. The dried and powdered plant was extracted successively with light petrol and CHCl₃. The petrol extract was fractionated on neutral Al₂O₃(activity III) giving five triterpenoid

* The plant was identified by Prof. Dr. A. Baytop (Istanbul). A voucher sample ISTE 8032 is deposited in the Herbarium of Faculty of Pharmacy, University of Ist.

and steroidal compounds one of which was sitosterol (mmp, IR).

The CHCl_3 extract gave a main mixed band (R_f 0.62) by preparative TLC (Si gel G with CHCl_3 -EtOH, 9:1) not separable by crystallization or argentized TLC. NMR and MS indicated that the band was a mixture. Separation of the mixed acetylated methyl esters by GLC (2% XE60, on WHP (Aw-DMCS) with 30 ml/min N_2 at 250°) gave three peaks with R_f 's equivalent to the derivatives of oleanolic, ursolic and micromeric acids.

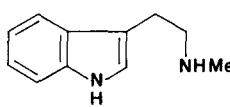
REFERENCES

1. Brieskorn, C. H. and Schlumprecht, L. (1951) *Arch. Pharm.* **284**, 239.
2. Brieskorn, C. H. and Eberhardt, K. H. (1953) *Arch. Pharm.* **286**, 124.
3. Brieskorn, C. H. and Weskamp, R. (1960) *Pharm. Acta Helv.* **35**, 183.
4. Kurt, H. and Devetak, Z. (1956) *Bull. Soc. Chimistes Rep. Populaire Bosnie Herzegovine* **5**, 15; *Chem. Abstr.* **51**, 13320.
5. Pourrat, H. and Le Men, J. (1953) *Ann. Pharm. Franc.* **11**, 191.
6. Theodossiou, Ph. (1959) *Trav. Soc. Pharm. Montpellier* **19**, 172; *Chem. Abstr.* **54**, 25082 g.
7. Brieskorn, C. H., Klinger, H. and Polonius, W. (1961) *Arch. Pharm.* **294**, 389.
8. Ulubelen, A., Öztürk, S. and Isildatci, S. (1968) *J. Pharm. Sci.* **6**, 1037.
9. Pettit, G. R., Klinger, H., Jorgensen, O. N. and Occolowitz, J. (1966) *Phytochemistry*, **5**, 301.
10. Brieskorn, C. H. and Grossletter, A. (1964) *Arch. Pharm.* **297**, 456.
11. Brieskorn, C. H. and Polonius, H. (1962) *Pharmazie* **17**, 705.
12. Leiner, U. (1954) Dissertation, Istanbul.
13. Gonzales, A. G., Breton, J. J. and Fraga, B. M. (1971) *Chem. Commun.* 567.
14. Berrera, B. J., Breton Funes, J. L., Martin de la Fuente, G. and Gonzales, G. A. (1968) *Anal. Real Soc. Espan. Fis. Quim. (Madrid)*, Ser. A (or B?) **64**, 175; *Chem. Abstr.* **69**, 19326 g.
15. Brieskorn, C. H. and Zveyrohn, G. (1970) *Pharmazie* **25**, 488.

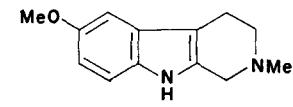
Phytochemistry, 1975, Vol. 14, pp. 821-822. Pergamon Press. Printed in England.

THE ALKALOIDS OF *NECTANDRA MEGAPOTAMICA*

DAVID DOS SANTOS FILHO and B. GILBERT


Faculdade de Farmácia e Odontologia de Ribeirão Preto (NPPN) Ribeirão Preto, São Paulo and
Centro de Pesquisas de Produtos Naturais, ICB, Universidade Federal do Rio de Janeiro,
ZC-32, Rio de Janeiro, Brazil

(Received 15 October 1974)


Key Word Index—*Nectandra megapotamica*; Lauraceae; indolealkylamine; *N*-methyltryptamine; 6-methoxy-*N*_b-methyl-1,2,3,4-tetrahydro- β -carboline, *Crithidia fasciculata* inhibition.

The genera *Nectandra* and *Ocotea* (Lauraceae) are well represented in the Brazilian flora. They are generally characterized by the occurrence of alkaloids of the benzylisoquinoline-aporphine group [1, 2]. We now report the occurrence in a *Nectandra* species of indoles which have previously been associated with hallucinogenic preparations from, for example, *Piptadenia* (Leguminosae) [3, 4] *Banisteriopsis* (Malpighiaceae) [5, 6] and *Virola* (Myristicaceae) [7] species. The bark of *Nectandra megapotamica* (Sprg.) Chodat et Hassler, a tree of medium height growing in the north-east of S. Paulo state, is popularly attributed with the property of relieving pain [8]. A chemical and pharmacological investigation was therefore undertaken. Two strong bases were isolated and shown

to be indoles by UV spectrometry. One was identified as *N*-methyltryptamine (**1**). The other was identified by IR, UV and NMR spectroscopy and mass spectrometry as 6-methoxy-*N*-methyl-1,2,3,4-tetrahydro- β -carboline (**2**). Comparison with authentic samples [9] confirmed the identity.

(**1**)

(**2**)

Both alkaloids **1** and **2** inhibit the growth of *Crithidia fasciculata* (Trypanosomatidae) in brain heart infusion hemin medium at 6 $\mu\text{g}/\text{ml}$. It is not